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ON A GENERALIZATION OF THE NAGHDI-HSU TRANSFORMATION 
AND ITS APPLICATION TO PROBLEMS OF ELASTICITY THEORY* 

A.N. BORODACHEV 

The following model is considered for the inhomogeneity of an elastic 
material: the shear modulus of the material is constant, but Poisson's- 
ratio (or the modulus of elasticity) depends inan arbitrary manner on 
three Cartesian coordinates. A linear transformation of vector fields 
is introduced, which is a generalization of the well-known Naghdi-Hsu 
transformation /l, 2/ (NHT) that enables the solution of the equilibrium 
equation of elasticity theory for bodies with variable Poisson's ratio 
to be represented in terms of a vector function (harmonic when there are 
no body forces), and proof of its completeness. In passing, a new 
variation of the NHT is formulated in which the integrals over the body 
volume are replaced by integrals over its surface. The fundamental 
solution of the equilibrium equation in displacements is presented in 
explicit form for an unbounded body with inhomogeneity of the type under 
consideration. 

Some problems in this area were investigated in /3-51. 

1. Let an isotropic elastic material occupy a bounded regular domain V with boundary S 
of a three-dimensional real Euclidean space R3 whose points will be denoted by x = (Xi,rzr r.?). 
The shear modulus p>O of the elastic material is constant while Poisson's ratio Y (x) is 
an arbitrary function from the class c' that satisfies the standard conditions -1 <v (X)<‘/z 

/6/. In this case the modulus of elasticity of the material E(x)= 2~11 i-v(x)] isapositive- 
definite function of the coordinates. 

We will use the following notation: u(x)and F(x) are the displacement and body force 
vectors, and A and V are the Laplace and gradient opertors in R3 and Ix 1 = (xr2+ xr2 i- x#'~. 

The equilibrium equation in displacements for this model of elastic material inhomogeneity 
has the form 

Lu (x) = - p-‘F (x), x E V (1.1) 
LUEAU+ V($'.u), rj(x)=[1--22~(x)]-~ 

Applying the divergence and curl operations to (l.l), we conclude that if V.F =0 and 

VxF=O, the functions (I+ q)V.u and V X u are harmonic. In the case of a homogeneous 
material the function V.u and V x u are harmonic, as is well-known /6/. 

Eq.(l.l) is satisfied identically if we set 

u(x)=B(x) + & Vs “;;““,\” dV(y) 
” 

y(x)=[l-Y(X)]-’ 

AB(x)=---‘F(x), XEV 

(1.2) 

where the second component in the first relationship of (1.2) is the gradient oftheparticular 
solution of Poisson's equation Ab = --l12yV.B, x E V. 

Another approach to the construction of the solution of (1.1) in terms of four scalar 
functions is described in /7/. 

In the case of a homogeneous material , relationships (1.2) reduce to the well-known 
Naghdi-Hsu solution /l/ whose relation to the Papkovich-Neuber and Galerkin representations 
is established in /2/. 

Furthermore, we introduce a linear transformation generalizing the NHT /2/ and closely 
associated with (1.1). In particular, its utilization enables us to prove the completeness 
of representation (1.2). 

Lemma?. An arbitrary vector field N in V allows a unique representation of the type 
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N (x)=H(x) $ &V 5 ‘i/r;?:) dV(y) 
v 
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(1.3) 

where 

H (x) = N(x) - & v j ’ (;r;;(;) dV(Y) (1.4) 

Conversely, if Ifi is an arbitrary vector field in Vt then it allows of a unique represen- 
tationofthe type (1.41, where Nis given by (1.3). 

Proof. Applying the divergence operation to (1.4) by using the relationship /8/ 

A S g, (~1 Ix - Y I-‘dv (Y) = - 4n(p (x) (1.5) 
Y 

where (p fs an arbitrary function , we find V-R = (2WyV~B. Substituting this expression into 
(1.4), we obtain the representat*on (1.3). 

To prove uniqueness, we assume that there are two representations of the type (1.3): R, 
and H,. Then by forming the difference of the right-hand sides of (1.3) and evaluating its 
divergence by using (l.!?), we find V.&-W= 0, after which we conclude that H, =Ha. 

The proof of the converse assertion of the lemma is performed analogously. 
Relationships (1.3) and (1.4), connecting the vector fields N and H, will be called the 

generalieed Naghdi-Hsu transformation (GNRT). 
Let us define the spaces N = {N(x): LN(x)= -p-‘F(X), x E V) and H = (H(x): AH(x) = 

-_~s-'F(x), XC? V}. The relation of the GRRT to (1.1) is established by the following. 

Theorem. The GNHT (1.3) and (1.4) establish a one-to-one correspondence between the 
spaces N and H. 

Proof. Acting on (1.3) with the operator L or on (1.4) with A we obtain the identity 
LN(x)= AH(x), XE V. The proof of the theorem is completed by using the lemma and this 
identity. 

As a consequence, we conclude from the theorem that the representation of the solution 
(1.1) in the form (1.2) is complete. Moreover, the vector function 8, that is harmonic when 
there are no bulk forces, is defined in a unique manner by the displ.aeement field 

B(x)=u(x+--V 4x s 
v 

Evaluating the divergence of curl of (1.2) or (1.6) we find 

(1+n)V.u=V.B, Vx u=V x B 

sy using the formulas connecting the stress and displacement /7/ and (1.21, we obtain a 
representation of the stress tensor components in terms of the vector function B t&J is 

the Rronecker delta) 

2. In the case of a homogeneous material when v(x)=v=const, Eqs.fl.2) and (1.6) 
reduce to the well-known MIT /2/ 

u(x)=Wx) -k&q q*dv(Yf 

B(x)=u(x)- I_ b(1 2v) 
vv v*u(y) U(y) 
J=?I- s 

(1.7) 

(2.1) 

We will next show that the volume integrals in relationships (2.1) can be replaced by 
integrals over the surface S when there are no bulk forces. Indeed, we have for an arbitrary 
harmonic function q(x)/9/ (n is the external normal to the surface S) 

v*dV(Y)=+j[P(Y)~ --an s 
alx--Yl acp (Y) 

lwi)Wr) cw 
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Taking into account that the functions 'i,u and '?.R are harmonic V for I> :~ 0, and 
using (2.2), we reduce (2.1) to the form 

djx-- yj 
u(x)=B(x)+ I,;$ ,,, +.B(s)I da 

_ d Ir.B (Y)I (2.3) 
:9 

dn I-u--Y// dS(Y) 

B(x) = u (x) - 
1 

8n(l-2~) 
vi ([V.u(y)]_~ --dn d’r.u(y)’ Ix--y\/ c/S(y) 

Relationships (2.3) are a new variation of the NHT in which the integrals over the body 
volume V are replaced by integrals over its surface S. 

As already noted, the vector function B is defined in a unique manner by the displacement 
field. As is shown in /2/, this enables us to use the NHT (2.1) in the solution of specific 
problems by the finite element method. Application of the Papkovich-Neuber functions for 
these purposes is not possible /lo/ since they are not defined in a unique manner by the 
displacement field. In this connection we note that the NHT modification (2.3) can apparently 
turn out to be useful in solving boundary value problems by the method of boundary elements 
/ll/ whose basis is the reduction of the problem to integral equations over the body surface. 

3. Up to now it was assumed that the domain V is bounded. For unbounded domains the 
representation of the solution (1.2) remains valid if a gradient operator is introduced under 
the integral sign. We consequently obtain 

u(\I)=B(x)+&~v(Y)C~B(Y)V~(IX-YJ-~)~V(Y) (3.1) 
I' 

or taking account of the relationship V,( I x -y I-‘)= -‘T,(j x - y 1-l) 

~(x)=B(~)--~sYY)V.B(Y)V~(IX-YI-‘)~V(Y) (3.2) 
v 

Indeed y (y) = 0 (I), V-B (y) = 0 (I y 1 -2), 1 x - y I -I = 0 (I y I -I), V (I x - y ) -‘) = 0 (I y I -2) for 
lYl-+a, and the integrands in (3.1) and (3.2) are of the order of IY I-* as lyl-+m 
(unlike the integrand in (1.2) which is of the order of Iy je3 as jy 1 + co) so that the 
integrals in (3.1) and (3.2) converge. 

The representation (3.2) (or (3.1)) enables the fundamental solution of the equilibrium 
equation for an unbounded elastic body whose shear modulus is constant while Poisson's ratio 
(or elastic modulus) depends in an arbitrary manner on the three Cartesian coordinates, to 
be constructed explicitly. 

Let V = RS and a let a unit concentrated force direction parallel to the Oxl,axis act at 
a certain point %E R3. In this case, the components of the bulk force vector have the form 

Fi = 6 (X - g) 6tk (i, k = I, 27 3) 

where 6(x)is the three-dimensional Dirac function and the vector function B@) is determined 
from the equations 

A=B!“’ (X9 5) = - C’ 6 (X - g) Sit . 

whose particular solutions that decay at infinity have the form 

ai, 
Btk)b%)= ruyr,x_E, (3.3) 

By using (3.3) we calcu late 

V,.B(k)(x,%)=~~(Ix-%l ') (3.4) 

Substituting (3.3) and (3.4) into (3.2) we obtain a representation for the displacement 
field caused by a unit concentrated force applied at a point % and directed parallel to the 
0x1( axis 

"ik @? 8) 
uik'(x,%)= *w,>_l, -- 

3hV (3.5) 

Q(x,%)= 
z . 

V(Y)$(IY -5l-‘)~(Ix-Yl-‘)dV(Y) 

The improper integrals in (3.5) converge for x#% and have a singularity of the type 

I x - 5 I-’ at the point x = %. Therefore, as in the case of a homogeneous material, the 
fundamental solution (3.5) has a singularity of order I x - 61-l at the point of application 
of the force. 



For v(x)= v= co& the functions 
dimensional Fourier integral transform 
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vik are evaluated explicitly by using the three- 

e\ 2n @lr--PI 

We hence obtain the known representation of the fundamental solution of the equilibrium 
equation of homogeneous elasticity theory, the Kelvin matrix /6/. 

We note that by using relationships (1.7), (3.3) and (3.4), the stress field caused by 
the action of a unit concentrated force on an unbounded elastic body with inhomogeneity of the 
type consideration can be evaluated. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

NAGHDI P.M. and HSU C.S., On a representation of displacements in linear elasticity in 
terms of three stress functions, J. Math. Mech., 10, 2, 1961. 

WANG M.Z.,The Naghdi-Hsu solution and the Naghdi-Hsu transformation, J. Elast., 15, 1,1985. 
BORODACHEV A.N. and DUDINSKII V.I., A contact problem for an elastic half-space with 
variable Poisson's ratio, Izv. Akad. Nauk SSSR, Mekhan., Tverd. Tela, 1, 1986. 

PLEVAKO V.P., The two-dimensional inverse problem of the theory of elasticity of inhomo- 
geneous media in polar coordinates, PMM, 49, 5, 1985. 

GIBSON R.E. and SILLS G.C., On the loaded elastic half-space with a depth varying Poisson's 
ratio, 2. Angew. Math. und Phys., 20, 5, 1969. 

GURTIN M.E., The linear theory of elasticity, Handbuch der Physik. B. etal., Via/2, Springer, 
1972. 

LOMAKIN V.A., Theory of Elasticity of Inhomogeneous Bodies, Izd. Moskov. Gosudarst. Univ., 
Moscow, 1976. 

GEL'FAND I.M. and SHILOV G.E., Generalized Functions and Operations Thereon, Fismatgir, 
Moscow, 1958. 

STIPPES M. and RI220 F.J., A note on the body force integral of classical elastostatics, 
2. Angew. Math. und Phys., 28, 2, 1977. 

10. BENTHEM J.P., Note on the Boussinesq-Papkovich stress functions, J. Elast., 9, 2, 1979. 
11. PARTON V.Z. and PERLIN P.I., Integral Equations of IElasticity Theory. Nauka, Moscow, 1977. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.51,No.4,pp.479-488,1987 0021-8928/87 $lO.OO+O.oO 
Printed in Great Britain 01988 Pergamon Press plc 

ON CERTAIN FORMULATIONS OF THE BOUNDARY-ELEMENTS METHOD* 

V.YA. TEXBSHCHENKO 

Variational formulations are proposed for the boundary-element method 
(BEM) to solve linear problems of elasticity theorywith a known Green's 
tensor. Unlike existing BEM formulations utilizing the method of weighted 
residuals /l/ or boundary integral equations /2/, the formulations to be 
considered below use a variational formulation of the problems for 
boundary functionals /3/ in a set of allowable functions in the form of 
double-layer potentials whose density is given in the form of BEM basis 
functions. Also examined is a BEM variational formulation on the basis 
of minimization problems for Treffts generalized functionals of the 
fundamental boundary value problems of linear elasticity theory /4/. A 
basis for the formulations is presented. Utilization of the proposed BEM 
formulations is effective in solving boundary-contact problems; con- 
sequently, a numerical realization is examined with an example of a 
unilateral variational problem (of the generalized Signorini problem type 
/5/) corresponding to the classical contact problem of inserting a stamp 
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